Assigned Readings for the Final Exam

Lecture 1: History of Molten Salt Reactors

  1. Chapter 1 – Introduction, Thomas J. Dolan, UIUC

Lectures 2 & 3: Overview of Molten Salt Coolants in the Nuclear Industry

  1. Chapter 12 – Fluid Fuel Reactors Book – Chemical Considerations
  2. Chapters 15 and 16 – Fluid Fuel Reactors Book – ARE & Equipment

Lectures 4-9: Thermodynamics of mixtures

  1. Sections 8.2-8.6.4 – General Thermodynamics Book – Chemical Thermodynamics
  2. Thermodynamic Assessment of the LiF–NaF–BeF2–ThF4–UF4 System, E. Capelli et al., Journal of Nuclear Materials – Phase Diagram
  3. Thermal Conductivity of High Temperature Fluoride Molten Salt Determined by Laser Flash Technique,Xue-Hui An et al., International Journal of Heat and Mass Transfer – Thermo-physical properties
  4. Optional (but very helpful) Reading: Ternary Phase Diagrams – “Ricci – Guide to Phase Diagrams of the Fluoride Systems”

Lectures 10-13: Chemistry of Molten Fluorides

  1. Olander, “Redox condition in molten fluoride salts Definition and control,” Journal of Nuclear Materials Volume 300, Issues 2–3, February 2002, Pages 270–272.
  2. The Modified Quasi-chemical Model: Part IV. Two-Sublattice Quadruplet Approximation, Arthur D. Pelton et al., Metallurgical and Materials Transactions A – Solution Thermodynamics
  3. Optional Reading: Baes – 1969 – The Chemistry and Thermodynamics of Molten Salt Reactor Fuels | A compilation of Gibb’s free energy of formation in flibe, and activity coefficients in flibe.
  4. Optional Reading: The Chemistry and Thermodynamics of Molten Salt Reactor Fuels, C.F. BAES, Jr., Journal of Nuclear Materials |A must read on flibe chemistry in molten salt reactors
  5. Chapter 2 – Gas Solubility in Molten Salts – Advances in Molten Salt Chemistry Volume 3 Book

Midterm Exam Reading:

  1. The Oxide Chemistry of Niobium in Molten LiF-BeF2 Mixtures, Gann Ting et al., Journal of Inorganic Nuclear Chemistry. 1977 (39) 1803-1808

Lectures 14-17: Isotope Transport

  1. JUPITER-II Molten Salt Flibe Research: An Update on Tritium, Mobilization and Redox Chemistry Experiments, David A. Petti et al., Fusion Engineering and Design

Lectures 18,19,21,22: Thermal-Hydraulics of Molten Salts: Unique Physics

  1. Chapter 9 – The Equation of Radiative Transfer in Participating Media, Michael F. Modest, Radiative Heat Transfer Book, 2nd edition
  2. Chapter 2 – Heat Generating Packed Pebble Beds Thermal-Hydraulic Modeling, Raluca O. Scarlat, Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt
    Pebble Bed Reactors
  3. IR Emission Spectra of the AIC14- Ion in AlCl3-MC1 (M = Li, Na, K) Melts, N. R. Smyrl et al., Journal of Inorganic and Nuclear Chemistry
  4. Radiation Heat Transfer in the Molten Salt FLiNaK, Ethan S. Chaleff et al., Nuclear Technology
  5. Concentrated Solar Power on Demand, Alexander H. Slocum et al., Solar Enegy
  6. The Monte Carlo Method in Radiative Heat Transfer, J. R. Howel et al., Journal of Heat Transfer

Lectures 24-27: Safety Analysis and Licensing

  1. Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology, Raluca O. Scarlat et al.Progress in Nuclear Energy
  2. US Design Certification: Licensing Basis Event Selection for the Pebble Bed Modular Reactor,
  3. Optional Reading: US Design Certification: Safety Classification of Structures, Systems, And Components for the Pebble Bed Modular Reactor
  4. Optional Reading: Non-Proliferation Attributes of Molten Salt Reactors, Uri Gat, Nuclear Engineering and Design

Final Lecture Assigned Readings:

  1. Viscosity of LiF-BeF2 Eutectic Mixture (XBeF2 = 0.328) and LiF Single Salt at Elevated Temperatures, Yoshiyuki Abe et al., Journal of Nuclear Materials
  2. A First-Principles Description of Liquid BeF2 and Its Mixtures with LiF: 2. Network
    Formation in LiF-BeF2, Mathieu Salanne et al., Journal of Physical Chemistry B 

Leave a Reply