Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p. 1/11 Raluca Scarlat, January 2017.

-i, Ma, Be- lavest KF-Lif + Nafterhary + <10% ufg RbF-Lif Zrt4 NAF Betz LiF, Befz 4 Betz(S) + elit. betz 50% mol comprinds: Lif all cross Liber 3 L'abety 24F·BeFz 4F.BeF 274°C Fuel & Blanket UFE -evolatie UlgF2 - A strong oxident U(I) - e not thermally stable & strong oxidents UB, U249 UF3 -> stable even above 1000°C, when pure & hert atm In gluoride metts 4473 2 3454+ 4° CT 2800°C Alcraft experiment: UF4-Not-Zif4 Fy & Zr Fy -isomorphans & similar with cell

																Lectu	ire No	otes,	p. 2/1	11	3, Ch.	12
UF4	ρ _ Λ)af	- 2	f	1											Ralu	ca Sc	arlat,	Janu	ary 2	2017	
	ç — a																					
U£	1-4	iF-	-B	et :	2		2	2	Ì	Ì	Ì.					1						
UF	e – 1	(it	- No	:F	/&	Zat		C	١Ę,	•												
	τ - Υ	с., i		Ц	E	X	2		44	۔ 0				-								
The	orile	m						1			1											
																Ì						
		Th	. ([V)																		
: -	ThE	+ -	44	r_	Be	Ŧ	2	2	$\leq l$	6 -	-2	2^{2}		J4	Ŧ	-	1	:	:	:	:	
			- 6						. 1	' -l	0	Mi			Se	Ŧz	• .					
	SM UF4	olar , —	- b 47	-	Be	eFz	-		:	:	:	-				:		:				
			Y												-							
• •	Uti	,	Thf	4	-L	e'F	-	B	eŦ.	2	Ja	İm	es	18	m	uld	vly	to	k	Jo	Na	ry
																. (. (T
Ply	and	en																				
				14	F4	- -	-2	p	sb	h	1- €	Au	ble	, <i>l</i>	ret	² dv	da	da	U.S			
	Pu7	3.	Ð	0.7	5-	- 0	,45	me	β_{c}	, .	Au	ble	.m	2	5-	50 v	nol	6 r	3Fz	ł	Í.	ٹ
				Å	m	d	6		JI	elen	ŧ	Dre		Ru		- x (h0	(-)	-	
								0	1	au	'. (100		1								
									2		- \											
																1						

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p. 3/11 Raluca Scarlat, January 2017 Liquid state temperatures - methods: formal analysis 2 ålferenhel-kærnal andysis 3 glændning fram high-temp. Og. states 4 visual observation of melking 5 phax peparation, by filfrahide Mythemp. - troyance method Dewsity Enthalpy, heat of Jusia ep - drop colorimetry Ni or Incomel -ice-calorimeters & large apper-black calorimeters Viscoorty 1 capillary effer 2) modified Boookfield rotating-cylinder for lig. film of vary-ing tuckness Kostud: Slab, steady state heat flux the press Petz, Uty, They low up press AlFz, Betz, ZoFy-appreciable Vap. press < 700°C

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p. 4/11 lap press Raluca Scarlat, January 2017 thy-Nat-Zrfy 800-1000°C 1. Rodeloush & Dison appartus 2. Sense - transport vhethod Nat-Zrty camplex vap phase <2 mintig @ soms/ 2rty, 200°C 918 °C MP Erty Mosfly Zrty Snad 542°CMP Betz larger alkalizate =) vap. press + large negative deraiation from Raoutt's law large DS; 20 partial molar autopres J. Stution substituting nonbordging 7 for bridging 7 When altali F mol%7 w.r.t. Zrtzy mol% andunars adequate permophysical posperties non-ideal solutions complex structures in the metts

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p. 5/11 Raluca Scarlat, January 2017	•	•
1. Mininize corrosian		
2 Remark origins or Plumples & suffic		
2. Remove Oxides, quy fluondes & sulfur		
High temp toatment with the, HPR		
Stored in Ni, under the - & later press. HF @ 700°C - & remark the 0 HF - R the over 1 h, 800°C		
HF @ too'z - & remark the o		
HF-RHZ over 1 h, 800°C		
USt -> U4+ UB+ -> U4+		
HF @ 8000 - a solahilde Hzs, Hel		
Dides oxy fluorides of U.S. Fr -> MEZ		
L <u>also</u>		
2ttf+ Ni - Witz+tz		
Ho Q & DOO'C.		
NiFz - Nicsolude)		
Fetz -> Fe (soluble)		

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p. 6/11 Kadiahar Stability Raluca Scarlat, January 2017 100 exponeres in Incomet capsules, w/ UFy $10^{11} - 10^{14} \text{ n} / \text{cm}^2 \text{s}$ 80-8000 MW/m3 80 - 8000 W/cm³ 600 - 800 hr ~ 1 month Post inadicitian studies 1. freezing point 2. chemical andysis 3. shilded petrographiz microscope 4. mass spectroscopy assay 5. 8 - spectroscopy 6. Contairner condition - shielded metallograph corrosia < 4 mils@ 300 hr - comparable -pref 1 ≥ 1093°C -> 12 mils & rond goar growth' due to overheating, grobably, not mai whom

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p.7/11 Raluca Scarlat, January 2017 Loop tests Aircraft reader Experiment . En Stypes of forced - analchia loops & 1 Large loop, pump outside reactor shield in horizontal beam hole of <u>LiTR</u> ("Goo-intensity fest reader" at ORNL) 2. Smaller loop - LiTK lattice - pumponteride of lattice So within a beam hole of MTR ("materials testing the " in Idaho) short durahan Small ST Same as capsules some as non-irraduation 24 mils corro No irradiatia effect on I fuel

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p. 8/11 Fission Products Raluca Scarlat, January 2017 valence state of redox eql. among components lacking. valence state of all FP fluorides unknavn if fission results in gordalian of partouser nateral Models + OPF = IP mare + MuellsF noble? Node Sous Nat-2-Fy Y tenry'slaw Uty Nat 2rty Lif Nat KF re Solublichies in law solutorling & W/TA why tead to I w/ AXX noble gas 7 te -tul Re 8.05 mo/m2atm (5) 10 8 mod / Cm3 atm Ar 24F = 52 8 (3)0-7 mol /m3-Pa BOF, FA latm tr = 0.05 mol/m³ Ar. eg q logims 2000 kg/m³ = egood mol m^s flike 0.1 kg/mol (25 appon tit) 6-1 kg/msl

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p 9/11 Raluca Scarlat, January 2017 Small-scale in-pile tests Xe : retained in stagnant mette las conc. remared by Helium sparging Bitt= heat of solution =) Solutatily A w/ TA - 2 ok to sparge & but temp. solutionly will P of temp 7 =0 ges will remain dissoluted p for buldsles. APE - less Xe prisoning than expected no system for Xe removal Gr I, I, II, IV Other PP andusia high th Rb, G, Sr, Ba, Zr, Y, Lanthandes ery stable fl @60 Lit - Nat will dissible high concentrions 25/- Clif-BeFz € 2r, I, I @ 600°C 2-3°6) Nat - Erfy solutality 4 osb/°C RE = 15 Lauthonides + Hriven + Scandrum Lawhamides. Sollo & w/ AA

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p 10/11 Raluca Scarlat, January 2017 oxidation potential de îter Br, J - 2 depends ou Ge, As No Morker, Rh, Pd, Ag, Cd, Sn, Sb Polably reduced to M° by & in Income fluorides of some of these may be stabilized in the melt deposited on walls of ARE RUFS: some was volation dileded in APE Fission Process FRt - P FP° to maintain charge ballance U44 -> U3+ number of cation equivalents, 4 (from Ufg) candider all demaits of concertain valence of assume deported as MO =D 3.24 callar equ =D something else needs to oxidize UES practicus origine (15) some of the EP oxidize

Fluid Fuel Reactors, 1958, Ch. 12 Lecture Notes, p 11/11 Raluca Scarlat, January 2017

Fuel Reprocessing 1. Solvent extraction z. Selective precipitation 3. preferential ion enchange ag-sollad st 1. (IFE volation by HF treatment=) ogood separation from: Cs, Sr, RE ock sep-from 2r · poor sep-from Nb, Ru · I, Te, Mo - volatilize completely from the mett · renvolatiles-diseavoled à pe fluoride solvent 2. Selective abs. & disorphian ou beds of Nat @loo°e Ufg (g) + 3 Nat Z 3Nat. UFG e NB & particulate matter acht. also dosb. an Nort bed · Les remains in Vap. @ 400°C ut des orphian & sep from N**b**, 1 Selectile potion 2. Selectile abob, on oxide beds Puce The peoplery - not possible this way